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Background
Transcranial direct current stimulation (tDCS) is a neuromodulatory technique that delivers low-
intensity, direct current to cortical areas facilitating or inhibiting spontaneous neuronal activity. In the
past 10 years, tDCS physiologic mechanisms of action have been intensively investigated giving
support for the investigation of its applications in clinical neuropsychiatry and rehabilitation. However,
new methodologic, ethical, and regulatory issues emerge when translating the findings of preclinical
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and phase I studies into phase II and III clinical studies. The aim of this comprehensive review is to
discuss the key challenges of this process and possible methods to address them.

Methods
We convened a workgroup of researchers in the field to review, discuss, and provide updates and key
challenges of neuromodulation use for clinical research.

Main Findings/Discussion
We reviewed several basic and clinical studies in the field and identified potential limitations, taking
into account the particularities of the technique. We review and discuss the findings into four topics: (1)
mechanisms of action of tDCS, parameters of use and computer-based human brain modeling
investigating electric current fields and magnitude induced by tDCS; (2) methodologic aspects related
to the clinical research of tDCS as divided according to study phase (ie, preclinical, phase I, phase II,
and phase III studies); (3) ethical and regulatory concerns; and (4) future directions regarding novel
approaches, novel devices, and future studies involving tDCS. Finally, we propose some alternative
methods to facilitate clinical research on tDCS.
! 2011 Elsevier Inc. All rights reserved.

Keywords transcranial direct current stimulation; brain stimulation; clinical research; physical
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The effects of uncontrolled electrical stimulation on the
brain have been reported since the distant past. Scribonius
Largus (the physician of the Roman Emperor Claudius),
described how placing a live torpedo fish over the scalp to
deliver a strong electric current could relieve a headache.1

Galen of Pergamum, the great medical researcher of the
ancients, and Pliny the Elder also described similar findings.2

In the 11th century, Ibn-Sidah, aMuslimphysician, suggested
using a live electric catfish for the treatment of epilepsy.2

With the introduction of the electric battery in the 18th
century, it became possible to evaluate the effect of direct
transcranial stimulation systematically. Individuals such as
Walsh (1773), Galvani (1791, 1797), and Volta (1792) all
recognized that electrical stimulation of varying duration
could evoke different physiological effects.3 In fact, one of
the first systematic reports of clinical applications of
galvanic currents date back to this period, when Giovanni
Aldini (Galvani’s nephew) and others used transcranial elec-
trical stimulation to treat melancholia.4,5 Over the past two
centuries, many other researchers (see Zago et al.3 for
further references) used galvanic current for the treatment
of mental disorders with varying results. In more recent
history, the use of electroconvulsive therapy and psycho-
pharmacologic drugs and lack of reliable neurophysiologic
markers have obscured direct current stimulation of the
central nervous system (CNS) as a therapeutic and research
tool particularly in the field of psychiatry. Nonetheless,
galvanic current has been used without interruption for the
treatment of musculoskeletal disorders and peripheral pain.

In fact, a reappraisal of transcranial direct current
stimulation (tDCS) as a form of noninvasive brain stimula-
tion took place at the turn of this century. The seminal studies
of Priori and colleagues,6 followed by Nitsche and Paulus7

demonstrated that weak, direct electric currents could be
delivered effectively transcranially as to induce bidirectional,

polarity-dependent changes in cortical. Specifically, anodal
direct current stimulation was shown to increase cortical
excitability, whereas cathodal stimulation decreased it. In
addition, animal and human studies have provided insight
regarding themechanisms underlying tDCS effects on neuro-
plasticity8-11 and current distribution according to the brain
area being stimulated.12-15 In addition, several studies
showed that tDCS could induce specific changes in neuropsy-
chologic, psychophysiologic, andmotor activity as a function
of targeted brain areas.16-19 Moreover, certain appealing
characteristics of tDCS (such as the fact that it is noninvasive
and has mostly well-tolerated, transient, and mild adverse
effects) have sparked an increase in clinical studies particu-
larly for neuropsychiatric disorders such as major depressive
disorder, chronic and acute pain, stroke rehabilitation, drug
addiction, and other neurologic and psychiatric condi-
tions.20-22 Although reported effects have been heteroge-
neous and warrant further clinical studies, studies have
been generally promising.

As the field of noninvasive brain stimulation moves
towards more clinical applications, there are new issues that
emerge. One is methodologic; how to study tDCS in
neuropsychiatry that historically has been heavily pharma-
cotherapy-based.23 Specifically, what are the optimal
approaches regarding study design (eg, two-arm, three-arm
versus factorial), study methodology (blinding, use of
placebo, concomitant use of drugs), sample requirements
(ie, sample size, eligibility criteria, sample recruitment),
interventions (eg, electrode positioning, dosage, duration,
and also comparison against pharmacotherapy), outcomes
(eg, clinical versus surrogate outcomes), and safety. Another
issue is ethical; who should apply tDCS in clinical settings
(eg, physicians, neuropsychologists, specialized staff); the
tolerable amount of risk for inducing maladaptive, long-
term neuroplasticity, and whether tDCS could be used for

2 Brunoni et al

REV 5.1.0 DTD ! BRS184_proof ! 31 March 2011 ! 2:13 pm

113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224



enhancing neuropsychologic performance in healthy
subjects; finally, regulatory issues also need to be discussed.
In contrast to transcranialmagnetic stimulation (TMS),which
is delivered through a sophisticated device, tDCS can be
administered with devices already manufactured and used
in pain and cosmetic medicine. These devices deliver direct
current to the joints and/or the skin. Also, contrary to TMS,
these devices are affordable and readily accessible and can
be purchased by nontrained individuals, including patients.

The last question is why conducting clinical research on
tDCS. Among others, we can identify three main reasons:
(1) there is a theoretical clinical basis for tDCS as
a substitutive treatment for pharmacotherapy, such as
patients with poor drug tolerability or those with adverse
pharmacologic interactions (eg, elderly people who use
several drugs). For instance, one group that would poten-
tially benefit from further investigation of tDCS safety is
pregnant women with unipolar depression, as there is
a lack of acceptable pharmacologic alternatives for this
condition24; (2) using tDCS as an augmentative treat-
mentdfor example, tDCS and restraint therapy for stroke25;
or tDCS and pharmacotherapy for chronic pain or major
depression. Again, side effects and noninvasiveness make
tDCS an appealing strategy to boost the effects of other
treatments in addition to its neurophysiologic effects on
membrane resting threshold that likely underlie its syner-
gistic effects. And, (3) tDCS is inexpensive; being therefore
attractive to areas lacking in resources. If proven effective,
tDCS will be an interesting option for developing countries.

The purpose of this review is to assess the current stage of
tDCS development and identify its potential limitations in
current clinical studies as to provide a comprehensive
framework for designing future clinical trials. This review
is divided in four parts. The first part reviews themechanisms
of action of tDCS, parameters of use and computer-based
human brain modeling investigating electric current fields
and magnitude induced by tDCS. Given the conciseness of
this section, the reader is invited to consult more recent
reviews focusing exclusively on the mechanisms of action
and technical development.26,27 The second section covers
methodologic aspects related to the clinical research applica-
tion of tDCS. This section is divided according to study phase
(ie, preclinical, phase I, phase II, and phase III studies). The
third section focuses on ethical and regulatory concerns. The
last section concludes with a presentation of what are ex-
pected in the near future regarding novel approaches, novel
devices, and future studies involving tDCS.

The Electrophysiology of tDCS

Mechanisms of Action

TDCS differs from other noninvasive brain stimulation
techniques such as transcranial electrical stimulation (TES)

and TMS. TDCS does not induce neuronal firing by supra-
threshold neuronal membrane depolarization but rather
modulates spontaneous neuronal network activity.27,28 At
the neuronal level, the primary mechanism of action is
a tDCS polarity-dependent shift (polarization) of resting
membrane potential. Although anodal DCS generally
enhances cortical activity and excitability, cathodal DCS
has opposite effects.7,29,30 Animal studies have shown that
changes in excitability are reflected in both spontaneous
firing rates31,32; and responsiveness to afferent synaptic
inputs.33,34 It is this primary polarization mechanism that
underlies the acute effects of low-intensity DC currents on
cortical excitability in humans.6

However, tDCS elicits after-effects lasting for up to 1
hour.9,35 Therefore, its mechanisms of action cannot be
solely attributed to changes of the electrical neuronal
membrane potential. In fact, further research showed that
tDCS also modifies the synaptic microenvironment, for
instance, by modifying synaptic strength NMDA receptor-
dependently or altering GABAergic activity.36-38 TDCS
also interferes with brain excitability through modulation
of intracortical and corticospinal neurons.10,39 The effects
of tDCS might be similar to those observed in long-term
potentiation (LTP), as shown by one recent animal study
that applied anodal motor cortex stimulation and showed
a lasting increase in postsynaptic excitatory potentials.8

Experiments with peripheral nerve39 and spinal cord40

stimulation showed that DC effects are also nonsynaptic,
possibly involving transient changes in the density of
protein channels localized below the stimulating electrode.

Given that a constant electric field displaces all polar
molecules and most of the neurotransmitters and receptors
in the brain have electrical properties, tDCS might also
influence neuronal function by inducing prolonged neuro-
chemical changes.38,40 For instance, magnetic resonance
spectroscopy showed that after anodal tDCS brain myoino-
sitol significantly increased, whereas n-acetyl-aspartate
failed to change.41

In addition to the ‘‘direct’’ tDCS effects described previ-
ously, ‘‘indirect’’ effects are also observed. This is seen in
connectivity-driven alterations of distant cortical and subcor-
tical areas.42,43 Interestingly, tDCSmodulates not only single
neuron activity and evoked neuronal activity, but also spon-
taneous neuronal oscillations. Ardolino et al.39 found that
below the cathodal electrode, the slow EEG activity in the
theta and delta band increases. Animal and modeling studies
suggest that a network of tightly coupled active neurons (eg,
oscillations) may be more sensitivity to applied weak current
than neurons in isolation.44-46

Although most early tDCS studies have been performed
in the motor cortex, it should be noticed that tDCS does not
only induce long-lasting alterations of motor-evoked poten-
tials, but also affects somatosensory and visual-evoked
potentials. This activity is dependent on the area stimu-
lated.47-49 Ferrucci et al.50 and Galea et al.51 provided
evidence that tDCS can influence the human cerebellum.

Clinical research with tDCS 3
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Cogiamanian et al.40 and Winkler et al.52 demonstrated that
transcutaneous DC stimulation modulates conduction along
the spinal cord and the segmental reflex pathways.

An important aspect when discussing the mechanisms of
tDCS is the magnitude and location of the current induced
in cortical tissues. Several modeling studies have been
conducted to address this issue and will be discussed in
a later section.

Finally, constant electrical fields influence several different
tissues (vessels, connective tissue) and pathophysiologic
mechanisms (inflammation, cellmigration, vascularmotility);
in addition, their effects are observed on multiple cellular
structures (cytoskeleton, mithocondria, membrane).With that
said, tDCSmay also influence nonneuronal components of the
CNS. Support for this theory is observed below anodal tDCS
electrode as it can induce prolonged brain vasodilatation.53

In conclusion, the mechanisms of action of DCS remain
to be completely elucidated, an issue that can have
important repercussions for future clinical applications.
These mechanisms likely involve different synaptic and
nonsynaptic effects on neurons and effects on nonneuronal
cells and tissues within the CNS.

Pharmacologic Investigation of tDCS

In tDCS research, pharmacologic studies use diverse drugs to
block and/or enhance the activity of neurotransmitters and its
receptors to observe how and whether tDCS-induced cortical
excitability is modified. Therefore, such studies aim to
enhance our knowledge about the mechanisms of action of
tDCS with regard to neuromodulation and neuroplasticity.

Evidence suggests that blocking voltage-gated sodium
and calcium channels decreases the excitability enhancing
effect of anodal tDCS. In contrast, cathodal tDCS-generated
excitability reductions are not affected.36,37 These findings
are in line with the assumption that tDCS induces shifts in
membrane resting threshold of cortical neurons.

Regarding neurotransmitters, it has been shown that
NMDA-glutamatergic receptors are involved in inhibitory
and facilitatory plasticity induced by tDCS. Blocking
NMDA receptors abolishes the after-effects of stimulation,
whereas enhancement of NMDA receptor efficacy by d-
cycloserine enhances selectively facilitatory plasticity.9,54

In contrast, GABAergic modulation with lorazepam results
in a delayed then enhanced and prolonged anodal tDCS-
induced excitability elevation55 (Table 1).

Regarding the monoaminergic neurotransmitters,
amphetamines (that increase monoaminergic activity)
seem to enhance tDCS-induced facilitatory plasticity.56

For the dopaminergic system, tDCS-generated plasticity
is modulated in a complex dosage- and subreceptor-
dependent manner. Application of the dopamine precursor
l-dopa converts facilitatory plasticity into inhibition, and
prolongs inhibitory plasticity,57 whereas blocking D2
receptors seems to abolish tDCS-induced plasticity,58 D2
agonists, applied at high or low dosages, decrease plasticity.
Furthermore, plasticity is restituted by medium dosage D2
agonists.59 Interestingly, the acetylcholine reuptake-
inhibitor rivastigmine affects tDCS-induced plasticity in
a similar fashion as l-dopa.11 For the serotoninergic system,
the 5-HT reuptake-inhibitor citalopram enhances facilita-
tory plasticity and also converts inhibitory plasticity into
facilitation.60

Table 1 Pharmacologic agents that interact with tDCS effects on cortical excitability

Drug Class Effect

Amine metabolism
Citalopram SERT blocker Enhancement of the duration of facilitatory anodal effects;

Facilitation of cathodal tDCS effects 59

Amphetamine NET/DAT competitive inhibitor Enhancment of the duration of facilitatory anodal effects.55

L-Dopa Dopamine precursor For anodal: excitability turns into inhibition; For cathodal: effects are
enhanced 12

Sulpiride D2-receptor blocker Abolishment of tDCS-induced plasticity (149) Q1
Pergolide Dopamine agonist agent Enhancement of the duration of cathodal tDCS effects (149, 150)
Amino acid metabolism
Lorazepam GABA allosteric modulator Anodal effects are delayed, but then enhanced and prolonged. 100

Rivastigmine Cholinesterase inhibitor Abolishment of anodal tDCS effects; stabilization of cathodal tDCS
effects (151)

Dextromethorpan NMDA antagonist agent Abolishment of the after-effects of anodal and cathodal tDCS.36,37

D-cycloserine NMDA agonist agent Enhancement of the duration of anodal effects; no effects during
cathodal stimulation.54

Voltage-sensitive channel blockers
Carbamazepine Voltage-sensitive sodium channel blocker Abolishment of the depolarizing effects of anodal tDCS. 36,37

Flunarizine Voltage-sensitive calcium channel blocker Similar effects of Carbamazepine.

tDCS 5 transcranial direct current stimulation; NET 5 norepinephrine transporter; DAT 5 dopamine transporter; GABA 5 gamma-aminobutyric acid;
NMDA 5 n-methyl-d-aspartic acid; SERT 5 serotonin transporter.
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From a clinical point of view, these results show that
pharmacotherapy and tDCS interact, which might be an
issue when studying clinical samples receiving both
interventions. In fact, the complex nonlinear interaction
makes it difficult to foresee the specific effects of
pathophysiologic alterations or drug application on the
amount and direction of tDCS-induced plasticity; thus
demanding further empirical research on this topic.

Parameters of Stimulation

TDCS parameters can vary widely and several factors need
to be defined. These factors include electrode size and
positioning, intensity, duration of stimulation, number of
sessions per day, and interval between sessions. By varying
these parameters, different amounts of electric current can
be delivered, thus inducing diverse physiologic and adverse
effects. Another potential concern is that tDCS devices are
not worldwide standardized. These devices can be easily
constructed using standard equipment and technology in
engineering laboratories of colleges and universities. In
fact, more than a dozen different tDCS devices can be
found throughout neuromodulation laboratories worldwide.

Electrode positioning
Although tDCS electrical fields are relatively nonfocal,
electrode positioning is critical. For instance, a previous
study showed that changing the electrode reference from
DLPFC to M1 eliminated tDCS effects on working
memory.16 Other studies have shown that phosphene-
thresholds are modulated only during occipital (visual
cortex) DCS and not other areas.49,61 Likewise, a tDCS trial
for major depression showed that only DLPFC stimulation
(and not occipital stimulation) ameliorated symptoms.62

Although current evidence suggests site-dependent effects,
other issues have yet to be exploreddfor instance, one
open question is whether and how brain stimulation in
one area influences adjacent and more distant areas.

TDCS studies usually use one anode and one cathode
electrode placed over the scalp to modulate a particular
area of the CNS. Electrode positioning is usually deter-
mined according to the International EEG 10-20 System.
Given the focality of tDCS, this appears appropriate. For
instance, studies exploring the motor cortex place elec-
trodes over C3 or C4; for the visual system, electrodes are
typically placed over O1 or O2 (for a review of tDCS
studies exploring different brain areas see Utz et al.63).

In this study, some terms used to describe tDCS
montages should be discussed: when one electrode is
placed bellow the neck, the entire montage is usually
described as ‘‘unipolar.’’ In contrast, montages with two
electrodes on the head are termed usually ‘‘bipolar.’’
However, this nomenclature might be inaccurate as techni-
cally the DC stimulation is always generated via two poles
(electrodes) generating an electric dipole between the
electrodes. Therefore, an alternative nomenclature of

‘‘mono-cephalic’’ and ‘‘bi-cephalic’’ is proposed to differ-
entiate between ‘‘unipolar’’ and ‘‘bipolar’’ setups, respec-
tively. Researchers in the field also use the terms
‘‘reference’’ and ‘‘stimulating’’ electrode to refer to the
‘‘neutral’’ and ‘‘active’’ electrode, respectively. However,
the term ‘‘reference’’ electrode may also be problematic,
especially for bicephalic montages because the ‘‘reference’’
electrode is not physiologically inert and can contribute to
activity modulation as well. This could be a potential
confounder depending on the main study question. None-
theless, researchers use these terms to highlight that (in
their study) they are under the assumption that in their
particular montage one electrode is being explored as the
‘‘stimulating,’’ whereas the other is the ‘‘reference.’’

In contrast, having the possibility to increase and
decrease activity in different brain areas simultaneously
may be advantageous. For instance, this could be useful in
conditions involving an imbalanced interhemispheric
activity (ie, in stroke).64 In scenarios whether the reference
electrode poses a confounding effect, an extracephalic
reference electrode could theoretically aid in avoiding
this issue. However, this might increase the risk of shunting
the electric current through the skin (which would then not
reach brain tissue) or displacing the current. Ultimately, the
choice of montage will be application specific; for example,
a recent study comparing different tDCS setups showed
that, although bicephalic setups were effective, the monoce-
phalic setup was no different than sham stimulation.65

Finally, in a monocephalic setup, using very high currents
there is the potential risk of influencing brain stem activity,
including respiratory control (note that this risk is theoret-
ical and was only observed in one historical report).66

Nevertheless, in choosing the extracephalic position, the
researcher must be confident that a significant electric field
will be induced on the target brain area.

Moreover, because current flow direction/electrical field
orientation relative to neuronal orientation might determine
the effects of tDCS,7 it might be that the effects of an ex-
tracephalic electrode differs relevantly from that of a bipolar
electrode arrangement. Alternatively, enhancing the size of
one electrode, thus reducing current density, might enable
functional monocephalic stimulation also with a bicephalic
electrode montage.58

Direct current stimulation can also be delivered over
noncortical brain areas. Ferrucci et al.50 stimulated the
cerebellum showing changes in performance in a cognitive
task for working memory. Galea et al.51 explored the inhib-
itory effects of the cerebellum on motor-evoked potentials
(MEPs) triggered by TMS over the motor cortex. This re-
vealed that tDCS could modify MEPs in a polarity-
specific manner. In addition, Cogiamanian et al.40 observed
that cathodal transcutaneous DC over the thoracic spinal
cord suppressed tibial somatosensory-evoked potentials.
Furthermore, Winkler et al.52 observed that transcutaneous
DCS over the spinal cord modulates the postactivation
depression of the H-reflex. Preliminary data indicates spinal
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DCS also influences nociception67 suggesting that the
spinal cord as a target for transcutaneous DCS. Challenges
for stimulation in this area must be considered such as loca-
tion of induced electrical fields.

Modeling tDCS
During tDCS, current is generated across the brain;
different montages result in distinct current flow through
the brain and thus the ability to adjust montage allows
customization and optimization of tDCS for specific
applications (see above). Though tDCS montage design
often follow basic assumptions (eg, ‘‘increased/decreased
excitability under the anode/cathode’’), computational
models of brain current flow during tDCS (so called
‘‘forward’’ models) provide more accurate insight into
detailed current flow patterns, and in some cases show
that the basic assumptions are not valid. When interpreting
the results of such simulations, it is important to recognize
that the intensity of current flow in any specific brain region
does not translate in any simple linear manner to the degree
of brain modulation. However, it seems reasonable to
predict that regions with more current flow are more likely
to be affected by stimulation, whereas regions with little or
no current flow will be spared the direct effects of
stimulation.

Computational models of tDCS range in complexity
from concentric sphere models to individualized high-
resolution models based an individual’s structural magnetic
resonance imaging (MRI). The appropriate level of detail
depends on the available computational resources and the
clinical question being asked (see technical note below).
Regardless of complexity, all models share the primary
outcome of correctly predicting brain current flow during
transcranial stimulation to guide clinical practice in a mean-
ingful manner.

Most clinical studies use tDCS devices that apply direct
electric currents via a constant current source, but even
within this space there are infinite variations of dosage and
montage that can be leveraged, with the help of models, to
optimize outcomes. The current is sent through patch
electrodes (surface areas typical range from 25 to 35 cm2

but can vary by an order of magnitude) attached to the scalp
surface. Total current injected ranges in magnitude are typi-
cally from 0.5 to 2 mA. Steps taken to improve tDCS spec-
ificity (including the use of larger ‘‘return’’ sponges and
extracephalic electrodes) have been proposed but more
analysis is required to determine the role of electrode-
montage in neuromodulation and targeting. Modeling
approaches are instrumental toward this goal. For example,
modeling studies have recently predicted a profound role of
the ‘‘return’’ electrode position in modulating overall
current flow including under the ‘‘active’’ (or ‘‘stimu-
lating’’) electrode.68 Specifically, for a fixed active elec-
trode position on the head, changing the position of the
return electrode (including cephalic and extracephalic posi-
tions) influences current flow through the presumed target

region directly under the active electrode. Therefore, in
addition to considering the role of scalp shunting and action
on deep brain structures (see above) when determining
electrode distance, the complete design of electrode
montage may subtly modulate cortical current flow.69

Again, computer modeling can provide valuable insight
into this process.

Recent modeling studies suggest that individual anatom-
ical differences may affect current flow through the cortex.
In comparison to TMS, which uses MEPs to index its
potency, there is no similar rationale for titrating tDCS
dosage. A related issue is the modification of tDCS dose
montages for individuals with skull defects or stroke-
related lesions. Such individuals may be candidates for
tDCS therapy but defects/lesions are expected to distort
current flow. For example, any defect/injury filled with
cerebrospinal fluid (CSF), including those related to stroke
of traumatic brain injury, is expected to preferentially
‘‘shunt’’ current flow.15 Ideally, tDCS would be adjusted
in a patient-specific (defect/lesion specific) manner to
take advantage of such distortions in guiding current flow
to targeted regions, while simultaneously avoiding any
safety concerns (such as current hot spots).

Evidence from modeling studies suggests that for typical
tDCS significant amounts of current can reach broad
cortical areas especially between and under the electrode
surface.12,13 Modeling studies also show that electrode
montage is critical to the amount of current shunted through
the skin.

Electrode montage is critically associated to the amount
of current being shunted through the skin, how much is
delivered to the brain, and to what targets. The overall
theme emerging from modeling efforts is that despite
clinical success in applying simplifying rules in dose
design, all the details and aspects of electrode montage
design combine to influence current flow such that these
simplifying rules are applicable but only within a limited
parameter range. For example, average current density
(total current/electrode area) at the ‘‘active’’ electrode may
be a useful metric to normalize specific neurophysiologic
outcomes (eg, TMS evoked MEPs), there is no universal
relationship between current density and brain modulation
when one considers the full spectrum of possible electrode
montages.13,70

Recent modeling data taking into consideration gyri and
sulci geometry have shown that electric current can
concentrate on the edge of gyri.71 Therefore, the effects
might not be homogeneous throughout the stimulated
area. Increased appreciation of the complexity of current
flow through the head (reflecting the complexity of neuro-
anatomy), reinforces the use of applying computational
models to assist in tDCS dose design72 rather than simply
relying on some heuristic rules (eg, ‘‘increased excitability
under the anode’’).

In addition to predicting brain current flow, modeling
studies also provide insight into electrode design by
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predicting current flow patterns through the skin. Modeling
studies has reinforced that current is not passed uniformly
through the skin but rather tends to concentrate near
electrode edges or skin inhomogeneities.13 Electrode
design can be simple saline-soaked cotton or sponge pads
or specifically designed patches with unique shapes and
materials to maximize stimulation magnitude and focality.
Modeling confirms that decreasing the salinity of the pads
reduces peak current concentration at the edges (even as
the total current applied and average current density is
fixed).73

In summary, modeling studies are expected to play
a critical role in the development of next-generation tDCS
technologies and approaches. Notably, tDCS devices have
not drastically changed since the time when the battery was
first discovered. Thus, conventional technology has certain
limitations. These include focality (area stimulated), depth
of penetration, and targeting-location control. To overcome
these and other limitations, technologies using arrays of
electrodes74 such as ‘‘High Definition’’ tDCS (HD-tDCS)71

and others (eg, simultaneous EEG monitoring during tDCS
as to adjust dosage and parameters) have been recently
proposed. Ultimately, as we begin integrating modern tech-
nology with transcranial stimulation techniques, clinical
control and efficacy will undoubtedly improve.

On a final technical note: Though there has been a recent
emphasize to develop increasingly accurate and complex
models,71,72,75 certain universal technical issues should be
considered for high-precision models, beginning with: (1)
high-resolution (eg, 1 mm) anatomic scans so that the entire
model work flow should preserve precision. Any finite-
element human head model is limited by the precision
and accuracy of tissue dimensions (masks) and conductivity

values incorporated (inhomogeneity and anisotropy). One
hallmark of precision is the cortical surface used in the final
finite-element mask solver should represent realistic sulci
and gyri; (2) Simultaneously, a priori knowledge of tissue
anatomy and factors know known to shape current flow
are applied to further refine segmentation. Particularly crit-
ical are discontinuities not present in nature that result from
limited scan resolution; notably both unnatural perforations
in planar tissues (eg, holes in cerebrospinal fluid where
brain contacts skull) and microstructures (eg, incomplete
or voxelized vessels) can produce significant aberrations
in predicted current flow. Addition of complexity without
proper parameterization can evidently decrease prediction
accuracy. An improper balance between these factors can
lead to distortions in brain current flow of an order of
magnitude or moreduncontrolled additional complexity
can in fact induce distortion. We thus emphasize that the
most appropriate methodology (ranging from concentric
spheres to individualized models) ultimately depends on
the clinical question being addressed.

The Clinical Research of tDCS

Studies in Nonhumans (Preclinical)

Previous animal studies have assessed safety limits of tDCS
current intensity. In one study, 58 rats received tDCS with
varying current densities for up to 270 minutes and
histologic evaluation was conducted to assess neuronal
lesion. Results suggest that brain lesions occurred when
current density was at least two orders of magnitude higher

Box 1 Insight from tDCS studies on cognition

TDCS has been increasingly used to transiently modify cognitive functions in the healthy human brain. This field
presents an exciting opportunity to extend the application of tDCS from a neuroscience research tool to the potential
treatment of cognitive impairments. Indeed, the understanding of how to successfully manipulate cortical excitability
for the formation of new memories or the acquisition of new skills could fill an important gap between phase I and II
clinical studies. TDCS studies have shown that anodal and cathodal tDCS delivered over the dorsolateral prefrontal
cortex facilitate visual working memory.16 Conversely, cathodal stimulation had a detrimental effect on short-term
auditory memory performance.76 Regardless of polarity, tDCS over the cerebellum disrupts practice-dependent improve-
ment during a modified Sternberg verbal working-memory task,50 whereas intermittent bifrontal tDCS impairs response
selection and preparation in the same task.77 Moreover, anodal tDCS to the anterior temporal lobes delivered before the
encoding and retrieval phase was effective in reducing false memories, whereas maintaining veridical memories.78

Finally, the application of anodal tDCS during slow-wave sleep improved declarative memory consolidation.79 Further
effects of tDCS on cognitive functions in healthy individuals have been shown for decision-making,80,81 probabilistic
classification learning,82 attention,83-85 and language.86,87 Overall, these studies focused on the short-term improve-
ments in performance induced by a single session of stimulation, typically delivered online during the task or imme-
diately before it. The main limitations are the lack of control conditions over different cortical areas and the lack of
a systematic monitoring of the duration of the effects. The effects of repeated applications of tDCS, their interaction
with specific learning stages and tasks and the extent to which these performance improvements are retained in the
long-term remain to be addressed. Hypothesis-driven behavioral paradigms or stimulation strategies are also necessary
to further explore the functional role of different cortical areas in human learning.

Clinical research with tDCS 7
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than typically used in humans88 and may reflect increase in
brain temperature never observed using conventional tDCS
protocols.14 Another interesting insight from this study is
that duration of tDCS only becomes a safety issue when
the intensity of stimulation is near the threshold associated
with neuronal lesion. Other animals studies conducted with
different goals have also shown that tDCS used with
charges similar to human studies do not induce histological
lesions.89

Finally, animal studies are useful for test dosing and
exploring physiologic aspects of tDCS mechanisms. In
contrast, such studies are rare, and positioning of the
electrodes as well as different cortical architecture, might
be critical. Still, animal models might be important for
answering specific questions not possible to be done in
humans.

Studies on Healthy Volunteers (Phase I)

In drug-based trials, phase I studies are nonrandomized,
noncontrolled clinical (human) trials designed to address
safety and optimal dosage of drugs. This is performed by
assessing the adverse effects/safety and dosage or the drugs.
In this section, previous tDCS studies that address these
questions and present issues that remain unsolved (dose
parameters was above discussed) are reviewed (Table 2).

Safety/Toxicity
Although tDCS differs in many aspects from other
noninvasive neuromodulatory therapies in that it does not
induce neuronal action potential and uses weak electric
currents, there are safety concerns that must be addressed.
If the electrochemical products generated by these currents
contact the skin, skin irritation may occur; in addition,
tissue heating associated with nonintact skin (therefore this
is especially important in people with skin diseases and/or
in protocols using daily tDCS applications and/or high

electric currents) may induce skin burning92dalthough
mild redness is more likely related to local, vasodilatation
skin changes rather than skin damage.93 In fact, considering
there is no direct contact between the brain and the elec-
trode and also the distance, electrochemical or heating
lesions to the neuronal tissue is less likely. Moreover,
experimental and modeling studies suggest no significant
temperature increases for typical tDCS protocols.7,71,73

TDCS has been tested in thousands of subjects world-
wide with no evidence of toxic effects to date. In addition to
the hundreds of studies exploring tDCS effects in diverse
contexts, some studies have focused specifically on safety.
For instance, in a large retrospective study, Poreisz et al.94

reviewed adverse effects in 77 healthy subjects and 25
patients who underwent a total of 567 1 mA stimulation
sessions. Results show the most common effects were
mild tingling sensations (75%), light itching sensation
(30%), moderate fatigue (35%), and headache (11.8%);
and most of these effects did not differ from those of
placebo stimulation. In another study, 164 sessions of stim-
ulation were analyzed. Authors found only mild adverse
effects with a low prevalence (0.11% in active and 0.08%
in sham stimulation group).95 Other initial studies90,91,96-99

also reported only mild, benign, and transient side effects.
In fact, the most severe adverse event reported is skin
lesions on the site of electrode placement.92

Historically, the most severe adverse effect was observed
in the first study of tDCS. During the 1960s Lippold and
Redfearn66 related a brief respiratory and motor paralysis in
a bifrontal electrode montage with the current reference
placed on the leg. No loss of consciousness was reported
and respiration returned to normal when the current was
stopped. This was attributed to the fact that the subject
received 10 times the intended intensity, probably 3 mA.27

General exclusion criteria for noninvasive brain stimu-
lation also apply for tDCS. Subjects must be free of unstable
medical conditions, or conditions that may increase the risk

Box 2 Two types of study design in tDCS: ‘‘Online’’ versus ‘‘Offline’’

Clinical researchers usually apply tDCS in two main modalities regarding the time point in which the primary outcome
variable is collected. When tDCS and the main outcome are coincident in time (ie, when the variable is collected during
tDCS application) the experiment is said to test the ‘‘online’’ effects of tDCS. The concept is also used when another
intervention (usually having a similar time span than tDCS such as physical therapy) and tDCS are applied
simultaneously. The rationale for an ‘‘online’’ approach is to take advantage of the putative property of tDCS to
induce excitability modifications of the brain (which is analogous to TMS) to test neuromodulatory effects on the study
hypothesis, such as alterations of brain functions during tDCS. For instance, an area of investigation that uses this
approach is transient modulation of moral judgment and decision making during tDCS (see Discussion on ethics in this
manuscript).

On the other hand, when tDCS and the variable being measured can be distinguished in time, it is said that the
experiment is applying tDCS in an ‘‘offline’’ protocol. An ‘‘offline’’ tDCS protocol applies, for instance, when one
surrogate outcome (or clinical parameter) is used before and after stimulation to index tDCS effects (see Discussion on
surrogate outcomes). An ‘‘offline’’ approach is also used in phase II/III tDCS studies. In such cases, tDCS is an
experimental intervention and its long-term, neuroplastic effects are indexed with one or more surrogate and/or
clinical outcomes.
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of stimulation such as uncontrolled epilepsy; although
epileptic seizures have not been observed in a pilot study
with patients with active epilepsy.100 Also, subjects must
have no metallic implants near the electrodes.

Finally, it should be underscored that most of these
observations were extracted from single stimulation studies
in healthy subjects without medications. Less is known
about the adverse effects of daily (or even twice daily) tDCS
in patients with neuropsychiatric disorders who use phar-
macotherapy. In such conditions, the adverse effects can be
magnified and therefore they should be actively inquired
during trials. For instance, some single-patient studies report
that tDCS can induce mania/hypomania in patients with
major depression.101-103 Therefore, we suggest that
a medical monitor should supervise tDCS treatment in
such contexts of increased risk of significant adverse effects.

Dosage
TDCS dosage is defined by the following parameters: (1)
current dosage (measured in amperes); (2) duration of
stimulation; and (3) electrode montage (size and position of
all electrodes). Current density (current dose divided by
electrode size) is also an important parameter in considering
dosage; especially for defining safety58; see the following
review for additional information.104 Themost common elec-
trode sizes are of 25-35 cm2 with currents of 1-2 mA (gener-
ating densities ranging from 0.28-0.80 A/m2) for up to 20-40
minutes. However, the current that effectively reaches
neuronal tissue depends on other less controllable factors.
These include skin resistance, skull resistance, resistance of
intracranial structures (eg, blood vessels, cerebrospinal fluid,
andmeninges) and the resistance of brain tissue, which varies
according to cell type and structure (eg, glial cells, pyramidal
neurons, white matter, and so on). Moreover, patients with
skull defects, brain lesions and other conditionswill influence
current amount and delivery. In addition, the baseline cortical
excitability is different in people using pharmacotherapy (eg,
benzodiazepines,55 anticonvulsants,105 antidepressants,69

and others106) and/or presenting neuropsychiatric disorders
(eg, major depression,107 schizophrenia,108 fibromyalgia,109

migraine,110 and others); an issue that is likely to interfere
with the chosen dosage. Finally, other variables influence
baseline cortical excitability such as gender,111 age,112 and
smoking.113 Hence, the same amount of current is likely to
have nonuniform effects in subjectswith different conditions.
For instance, one study showed that low (25 mg) and high
(200 mg) doses of l-dopa abolished tDCS-induced effects
on cortical excitability, whereas an intermediate (100 mg)
dosage increased inhibitory effects.114 Notwithstanding,
these studies should be regarded as exploratory and thus repli-
cated in other contexts and samples, especially in clinical
populations.

Therefore, in the context of clinical research, such
individual factors are a source of variability and, if
important enough, may result in negative findings. To
avoid this, one alternative is to standardize the source of

error in the sample. For instance, using saline-soaked
sponges to minimize skin resistance (which can also be
measured by an ohmmeter adapted in the tDCS devi-
cedsome devices do give the resistance), excluding
patients under pharmacotherapy, or controlling when it is
not feasible (eg, benzodiazepines), avoiding sample
heterogeneity using specific diagnostic criteria, particu-
larly when working with a small, neuropsychiatric subject
pool. Future studies addressing the interaction of tDCS
and drugs in psychopharmacology will continue to explore
and identify which drugs do not interfere with tDCS
effects and which ones could block or enhance tDCS-
excitability effects.10,27

Initial studies measuring brain excitability demonstrate
that currents as low as 0.28 A/m2 present depolarizing and
hyperpolarizing effects.6,7 In addition, phase I/II studies ad-
dressed the effects of varying dose and/or time of stimula-
tion on cortical excitability and/or neuropsychologic tasks.
Ohn et al.115 tested the effects on working memory during
30 minutes of stimulation, showing that performance
increased in a time-dependent fashion. Other studies
showed the cognitive effects induced by tDCS are depen-
dent on the current intensity; demonstrating effects such
as enhanced verbal fluency improvement at 2 mA (versus
lower improvement at 1 mA)18; and working memory
improvement at 2 mA (versus no improvement at 1
mA).116 Nevertheless, it remains unclear whether there is
a linear (dose versus effect) curve associated with direct
current stimulation and the influence of each parameter
(dose, current density, stimulation duration) on these
effects. It is known that increasing current densities will
increase the depth of the electrical field, thus affecting
different populations of neurons. However, at greater inten-
sity tDCS might be painful to the subjects. For these
reasons, a more effective approach designed to prolong
tDCS effects is to increase the stimulation duration as
opposed to the current density.7,27,35,37

Short applications (ie, seconds to a few minutes) of
anodal/cathodal tDCS result in excitability shifts during
stimulation but no after-effects. However, no long-term
effects are seen. In contrast, 10 minutes or more of
stimulation can elicit prolonged after-effects, which can
be sustained for over an hour.7,27,39 The exact duration of
effects depends on the targeted cortical area and on the
type of variable assessed.

For clinical purposes, longer-lasting effects are crucial.
Single-dose tDCS interventions have relatively short-lived
after-effects. Multiple stimulation sessions are required to
induce a significant manipulation in synaptic efficacy.117,118

In fact, repeated sessions of tDCS may have cumulative
effects associated with greater magnitude and duration of
behavioral effects. For example, cathodal tDCS applied
over 5 consecutive days is associated with cumulative
motor function improvement lasting up to 2 weeks after
the end of stimulation. This is an effect which is not
observed when sessions are applied weekly (as opposed

10 Brunoni et al
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to daily).98 Whether this approach is appropriate to maxi-
mize and stabilize the electrophysiologic effects of tDCS
remains under investigation. The optimal repetition rate
and duration to promote tDCS-induced plasticity also
remains to be determined. In animal experiments, repetition
of tDCS during the after-effects of a first stimulation
session has been shown to enhance efficacy.32 However,
repeated plasticity induction may result in homeostatically
driven antagonistic effects.119 Recently, Monte-Silva and
coworkers118 directly compared the effects induced by
single sessions of cathodal tDCS over the motor cortex to
the effects of repetitive stimulation during or after the
after-effects of the first stimulation. The results showed
that increasing cathodal tDCS duration (1 mA, with no
interstimulation interval) resulted in longer-lasting after-
effects, typically over 1 hour (tDCS duration from 9 to
18 min prolonged the after-effects from 60 to 90 minutes).
Interestingly, when the second stimulation was performed
during the after-effects of the first, a prolongation and
enhancement of tDCS-induced effects for up to 120
minutes after stimulation was observed. In contrast, when
the second session was performed 3 or 24 hours after the
first, tDCS effects on cortical excitability were mixed.
This was shown with a primary reduction or abolishment
of the initial effects of cathodal tDCS, followed by a later
reoccurrence of tDCS-induced cortical inhibition. Such
neurophysiologic evidence is indicative of a stimulation
timing-dependent plasticity regulation in the human motor
cortex. Understanding the interaction of the consecutive

stimulation protocols appears crucial to effectively target
spontaneous changes of cortical activity and excitability.
Hence, implementing more effective procedures of plas-
ticity induction procedures in clinical settings is crucialdin
fact these results need to be replicated in clinical
populations.

Studies on Patients With Neuropsychiatric
Conditions (Phase II/III)

Phases II and III studies relate to using an intervention in
clinical samples. Phase II studies are typically small and
use targeted samples to obtain additional information
regarding optimal parameters of stimulation. Phase III are
pivotal studies, involving larger samples. In the United
States, two positive phase III trials are required for
approving a drug or device by the Food and Drug Agency
(FDA).

As mentioned previously, several studies have explored
the therapeutic application of tDCS in several neuropsy-
chiatric disorders. The results of these studies reveal long-
lasting tDCS effects and have promoted its use in clinical
settings. Because clinical development of tDCS is being
conducted mainly in academia, studies are not widely
standardized regarding variables and population samples,
therefore limiting conclusions. These findings are also
limited by small sample sizes and experimental design. In
fact, a similar scenario has been observed for TMS 5 to 10

Box 3 Insights from tDCS studies for major depression

In the past 10 years, several trials applied tDCS to subjects with major depressive disorder (MDD). Fregni et al.124

performed a pilot randomized, sham-controlled, double-blind trial in which 10 patients were randomly assigned to
receive either 5 days of active or sham stimulation. Boggio et al.62 also enrolled 40 MDD subjects with different
degrees of refractoriness (but medication-free) and randomized them to 10 sessions of active dorsolateral prefrontal
cortex (DLPFC) tDCS, active occipital tDCS or sham tDCS. The findings suggested that the active DLPFC tDCS group pre-
sented a superior, significant improvement in HDRS scores compared with the other groups. Rigonatti et al.90

demonstrated in an open-label study that Fluoxetine 20 mg/d and active tDCS (from patients of Boggio’s study) pre-
sented similar scores after 6 weeks of treatment. Ferrucci et al.91 stimulated 14 patients with severe MDD using 2 mA for
20 minutes for 5 days twice a day, showing a significant improvement in mood. Such effects seem to be more robust in
more severe patients.125 Loo et al.99 enrolled 40 patients with severe MDD, in a double-blinded, sham-controlled study
but failed to demonstrate significant difference between groups in this phase; tDCS was only more effective during the
open-label phase in which patients received additional five sessions. However, this study has some limitations: the
dose applied was relatively low (1 mA), and only five stimulations sessions were held, which were alternated (other
studies used consecutive sessions). Moreover, patients with axis II disorders were not excluded. Finally, Brunoni
et al.126 compared patients with unipolar versus bipolar depression and found that tDCS might be a potential
treatment for both conditions. However, as with phase II trials, these studies share common characteristics:
relatively small sample sizes, heterogeneous sample (eg, refractoriness, medication use), blinding vulnerability
(some studies were open-label), absence of primary hypothesis (most of them used several depression rating scales),
and presence of ‘‘carryover’’ effects (in crossover studies). These initial trials likely incurred in some false-positive and
false-negative results; nevertheless, they revealed the potential effectiveness of tDCS for major depressive disorder.
Finally, a search made on clinicaltrials.gov in September 2010 revealed that there are at least seven trials exploring
the antidepressive effects of tDCS worldwide; and the design and methods of one of them127 has been recently
published.
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years ago.120 This section aims to comprehensively review
the main issues of the later phases of clinical trial develop-
ment for tDCS.

Issues related to recruitment and eligibility
Recruiting subjects for tDCS clinical trials presents a chal-
lenge. Proposing an intervention alternative to the main-
stream pharmacotherapy might be seen by prospective
patients and referring physicians in nonacademic settings
as suspicious. This issue can be particularly important when
a large sample size is required and/or if the eligibility
criteria exclude refractory patients who are more prone to
enroll in research protocols. Likewise, referral physicians,
due to time constraints in the ambulatory setting, usually
prefer to treat drug-na€ıve patients themselves. Indeed, daily
visits for 1-to-2 weeks to research centers might sound
unappealing and/or unaffordable even to refractory patients.
In such contexts, it is advisable to have multiple referral
sources and to use broad recruitment strategies. Building
trust with potential volunteers is imperative. One cost-
effectiveness approach could be using explanatory videos
in lay language.26

Another issue is sample heterogeneity. In pivotal clinical
trials comparing tDCS against pharmacotherapy, large
samples are typically required and patient heterogeneity
might be larger than for drug trials for the same condition.

This is due to the fact that the severity of the condition
ranges from drug-na€ıve to refractory subjects. Targeting
only the former would create difficult enrollment (for the
reasons mentioned previously), although targeting only the
latter decreases overall generalizability. Possible solutions
include stratification during randomization (refractory
versus nonrefractory), post hoc analysis controlling for
refractoriness, or increasing sample size to address some of
the issues associated with heterogeneity.

Blinding issues
It appears easier to conduct sham-controlled trials using
tDCS compared with TMS. TMS induces itching and pain
sensations over the stimulation site, whereas tDCS induces
a mild tingling sensation that usually rapidly fades.
Therefore, sham protocols begin with active tDCS, which
is switched off within a minute. In addition, the tingling
sensation relates to the velocity in which the current is
either increased or decreased. In fact, an increase of current
delivery from 0.1 to 0.2 mA/s generates no discomfort for
most subjects.121 Interestingly, some subjects in the sham
group continue feeling some tingling even after the current
is discontinued.

These sensations are related to the total amount of
charge delivered. Although this has yet to be systematically
evaluated, this relationship can be a potential issue when

Box 4 Challenges for Outcome Measures in tDCS Clinical Research

As neither the full spectrum of clinical efficacy nor the mechanism of action of tDCS are completely described, outcome
measures for tDCS trials ideally will inform both about tDCS clinical potency and about the biology of tDCS. With respect
to clinical data, the common accepted behavioral outcomes might be insensitive to subtle changes in neurologic
function. This is particularly relevant for tDCS as it has a modest (perhaps subclinical) neuromodulatory and behavioral
effect, particularly for single exposures. Thus in the present early stages of investigation, the field of study may benefit
from clinical trial designs that incorporate secondary outcomes in addition to measures of the patient’s chief symptom.
Among these are changes in normal function that may be affected by tDCS. For example, an investigator testing tDCS
effects on chronic pain might add a battery of motor tasks to see whether there is any subtle loss of normal function
with treatment. Similarly, an investigator applying tDCS for treatment of epilepsy may add a questionnaire to assess
mood.

Further, prospects for improving tDCS clinical efficacy improve if the tDCS mechanism of action is better understood. To
date, the common feature in tDCS trials appears to be its capacity to produce a lasting change in regional cortical
excitability. Given these data, outcome measures aimed to capture the extent to which tDCS induces synaptic plasticity
may also be useful additions to ongoing trials. That is, one could ask whether tDCS improved the symptom in question,
and in parallel ask whether an LTP-type or LTD-type change in regional cortical excitability has occurred. If so, then
perhaps in future trials, the tDCS effect may be augmented by the addition of appropriate pharmacologic agents or
behavioral tasks that facilitate synaptic plasticity. As an example, in future trials in which cathodal tDCS may be applied
over an epileptic seizure focus, whether LTD-type suppression has occurred over the stimulated area can be determined
within hours of tDCS. However to find out whether seizures are reduced in frequency may take days to weeks. Thus
subjects can be stratified into groups that have or have not undergone regional LTD, and clinical outcomes can be
evaluated separately for subjects that did and did not experience regional depotentiation. This subclassification of
subjects in an epilepsy trial would potentially reduce confounding results from subjects where tDCS was not biologically
effective at the time it was administered. In addition, investigators would be wise to bear in mind the potential pitfall
of choosing outcome scales that are not sufficiently sensitive to capture a relatively modest clinical tDCS effect. Thus, if
tDCS strongly changes a component of a larger clinical scale, further research can be stimulated, even if negative results
were found initially.

12 Brunoni et al
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delivering relatively high charges (.1.5-2 mA/s) and/or
higher current densities. There is evidence that electrolyte
solutions with lower NaCl concentrations (15 mM) are
perceived as more comfortable during tDCS than those
solutions with higher NaCl concentrations (220 mM).
Because the ionic strength of deionized water is much
less than that of all NaCl solutions, there is a significantly
larger voltage required to carry current through the skin
compared with NaCl solutions. Thus, it is recommended
the use of solutions with relatively low NaCl concentration,
in the range 15 mM to 140 mM, as tDCS at these
concentrations is more likely to be perceived as comfort-
able, requires low voltage and still allows good conduction
of current.122 It has also been proposed to apply topical
anesthetics to alleviate this issue.27

An additional blinding issue is the local vasodilatation
after tDCS. This causes the skin to turn red that might not
be acknowledged by the subject but might be seen by the
staff and other patients. In clinical protocols, such redness
can be evident after several days of stimulation. This can
become a logistical issue, demanding stimulated patients to
leave the setting immediately, avoiding contact with other
people (patients and researchers) as to avoid blinding
breaking. Another approach would be to interview patients
before (and not after) being stimulated. If a rater notices
evidence of redness on the scalp of a patient, another
blinded rater should substitute him/her, although this matter
is more important in sham-controlled studies as in studies
using active groups differing only regarding polarity (and
not scalp site of stimulation) cathodal and anodal stimula-
tion cannot be distinguished between each other. Also, 30
seconds of active stimulation in the sham protocols might
also lead to local redness.

Clinical protocols should assess post hoc the effective-
ness of blinding; though investigators need to be aware that
potential differences might occur because active tDCS is
more effective than sham tDCS. It is not easy to detangle
unblinding versus response because effectiveness. Other
alternatives are (1) to avoid crossover trials, especially
when the crossover happens in the same section, as to avoid
subjects noticing the differences; (2) to apply active
protocols but switching polarity so that adverse effects do
not threaten blinding even if noticed, although the issue
would be whether changing polarity would be an appro-
priate control condition, when the reference electrode is not
physiologically inert.

Study design
Four approaches in tDCS clinical trials for neuropsychiatric
disorders are possible: (1) to compare active versus tDCS
sham in a superiority trial; (2) to compare tDCS versus
another therapy (eg, acupuncture, pharmacotherapy) as
a superiority or noninferiority trial; (3) to combine tDCS
with another therapy (eg, physical therapy, pharmaco-
therapy) versus sham tDCS and another therapy as
a superiority trial; and (4) combination of these approaches.

Two-arm designs are suitable when comparing active
versus tDCS sham, an approach commonly used in pilot,
‘‘proof-of-concept’’ studies. This approach is effective in
studies exploring the mechanisms of action of tDCS, for
example, with neuroimaging or serum measurements.

Three-arm and ‘‘double-dummy’’ (ie, placebo pill 1
active tDCS versus pharmacotherapy1 sham tDCS) designs
are adequate for comparing tDCS against another therapy.
The placebo arm is interesting for increasing assay sensi-
tivity, although ethical concerns might impede using placebo
groups when there are reasons to believe that treatment
efficacy among study arms is imbalanced (principle of
clinical equipoise).123

Another option is a factorial (23 2) design,which could be
useful to test tDCS with and/or against another therapy of
interest. For instance, in a trial testing tDCS for chronic pain,
patients could be randomized to four groups: only tDCS, only
pharmacotherapy, tDCS, and pharmacotherapy and sham
plus placebo. In fact, such a design is the most robust as it
tests two interventions simultaneously and also one inter-
vention against another, making them optimal for pivotal
studies. Although comprehensive, this approach is more
demanding regarding resources, sample size, and logistics.

The n-of-one (n 5 1) trial is a possible approach when
the researcher is confident that tDCS effects are short-
lasting (which is not usually the case for studies using
multiple sessions of tDCS). In this design, one subject is
randomized to receive repeated randomized allocations of
the tDCS treatment. This is helpful especially to address
different parameters of stimulation for single session
protocols.

Attrition
Attrition (or ‘‘dropout’’) is the premature discontinuation of
participation in a trial occurring either immediately after
the baseline visit or at any time before endpoint. The
specific reasons for attrition in tDCS trials should still be
investigated. Although some might be the same for
pharmacotherapy, one reason more specific for tDCS trials
is the difficulty to comply with required daily visits to the
research center (that usually occur during the first 2 weeks
of the study). In intention-to-treat trials, this issue can be
particularly perturbing as such subjects will maintain the
same baseline scores at endpoint and thus diminish the
effect size between groups. To avoid attrition in tDCS trials,
some measures can be taken such as: (1) concede one or
two nonconsecutive missing visits, which are replaced at
the end of the daily stimulation phase and (2) using a ‘‘run-
in’’ period, that is, a phase before trial onset in which
subjects receive either active or placebo/sham treatment
(usually for 1 week) as a method to preemptively screen
and discard nonadherent subjects. Although the usefulness
of run-in phases is controversial in pharmacotherapy given
the potential for selection bias, the rationale for using tDCS
is to select subjects that can commit to the stimulation
protocol requirements.
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Finally, although uncommon, another issue is skin burn.
This would prevent further stimulations, breaking blinding,
and also forcing the investigators to withdraw treatment,
leading to a study dropout. Skin burning can be avoided by
diminishing electric density (ie, increasing electrode size
and/or diminish electric current) and electric resistance (by
using rubber electrodes involved with saline-soaked
sponges) over the stimulation site.

Statistical issues
Being that most tDCS trials are exploratory and using small
samples, they are particularly vulnerable to type I and type
II errors.

Type I (false-positive) errors occur in exploratory studies
performing several statistical tests, being the case of many
phase II tDCS trials. In this scenario, investigators need to
decide whether to claim findings as exploratory or to
determine a priori the statistical method for the primary
outcome, differentiating other statistical analyses as
secondary.

Type II (false-negative) errors occur in small studies and
are related to underpowered trials. Again, most phase II
tDCS trials recruit small samples and are prone to this error.
To avoid this, researchers must perform sample size
calculations when designing the trial. Another approach is
to use adaptive designs, which allow sample increasing
during the study, although this method may be challenging
for researchers and readers to interpret the data. In this
context, given that most of tDCS trials are conducted with
limited resources, the best choice of primary study outcome
is a continuous outcome and two time points so as to increase
statistical power (and consider other analyses as secondary).
Although baseline differences are usually not significant in
tDCS trials probably because trials have a relatively homo-
geneous population, one option is to calculate normalized
differences from baseline. In this case a simple approach to
calculate sample size is to use independent two-sample t test
provided in most statistical software packages.

Pilot versus pivotal studies for tDCS
Most phase II studies are also referred as ‘‘proof-of-
concept’’ or ‘‘pilot’’ studies. These studies typically use
small, high-targeted samples that represent the more severe
spectrum of a disease to address the efficacy of a given
treatment in optimal conditions. They also use several
surrogate endpoints and perform many exploratory anal-
yses. Exploratory phase II studies are necessary as they
provide data to be used in subsequent trials. Furthermore,
data of small studies can be pooled together in metaanal-
yses. However, the validity of these analyses can be
contested when approving clinical interventions.128,129

An additional challenge for pilot studies is the explor-
atory nature and thus an important degree of risk regarding
outcomes that is normally not seen in animal models in
neuromodulation research. This hinders the ability to test
the clinical efficacy of tDCS for a particular condition for

the first time. In such context, a negative finding might be
due to tDCS parameters or a poor neurobiologic model (eg,
a negative finding in a pain trial with anodal stimulation
over the DLPFC area might represent, besides being a true-
negative, either the use of incorrect tDCS parameters,
a misconception in the neurologic model; thus the DLPFC
area being unrelated to pain pathophysiology). This issue
poses an additional challenge in tDCS research.

Therefore, pivotal (phase III) studies are necessary to
validate tDCS as an effective treatment when proof-of-
concept trials showed encouraging results. Future phase III
studies should include: (1) sample size estimation based on
prior, pilot trials or metaanalyses; (2) robust blinding
method (example: using tDCS devices that can be auto-
matically turned off as to keep both patients and appliers
unaware of the intervention delivered) and (3) assessment
of sample heterogeneity, either targeting particular samples
(eg, medication-free patients) or identifying potential
sources of heterogeneity (eg, degree of refractoriness,
number of depressive episodes, depression severity, and
others) and controlling for them during study design
(stratified randomization approaches) or statistical analysis.

Surrogate outcomes
Although several definitions for surrogate (or substitutive)
outcomes exist, they are typically understood as laboratory
measurements that substitute clinically meaningful
outcomes for being in a prior step in the pathophysiologic
pathway of the disease.130 In neuromodulation research,
this also includes neuropsychologic tests and neuroimaging
scans. The advantage of using surrogate outcomes is avoid-
ing long-term, expensive research. This is achieved by
substituting ‘‘hard’’ outcomes (death or serious events) for
‘‘soft’’ measurements that take place earlier. Furthermore,
surrogate outcomes must have high accuracy and low vari-
ability; otherwise their utility is limited (Table 3).

One surrogate outcome that is often used is TMS-
indexed cortical excitability, a neurophysiologic measure-
ment. According to the protocol used, it indexes and detects
changes in brain activity.131 For instance, measurement of
motor thresholddthe lowest intensity to elicit motor-
evoked potentials of more than 50 uV in at least 50% of
trialsdis used for studying whether different tDCS proto-
cols change motor cortical excitability. Also, measurement
of the silent perioddthe period of electromyographic
suppression (or voluntary muscle activity) after one single
suprathreshold TMS pulsedcan be also used for addressing
whether and how tDCS affects the inhibitory cortical inter-
neurons that are recruited during this task. Moreover,
paired-pulse TMS is also used for studying inhibitory or
excitatory cortical mechanisms elicited after one supra-
threshold pulse and is another method that can be coupled
with tDCS for indexing cortical excitability. Nonetheless,
all these methods are limited to the motor cortex and thus
might not necessarily reflect net brain cortical excitability
and/or cortical excitability of specific brain areas.
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Neuropsychologic tests are able to measure brain
activity in some areas, especially those that cannot be
indexed through TMS. Moreover, cognitive deficits are
a common consequence of brain injury, stroke, epilepsy,
neurodegenerative, and other neurologic disorders. Hence,
the rehabilitation of cognitive function, such as language,
spatial perception, attention, memory, calculation, and
praxis represents an expanding area of neurologic
rehabilitation and has recently attracted growing attention
within the scientific community. For instance, changes in
the activity of the prefrontal cortex can be measured
using tests of working memory and attention, whereas
temporoparietal stimulation can be evaluated using
working memory tests. A drawback of several neuro-
psychologic tests is the need of a control group to adjust
for learning effects biases. Performance is also influenced
by educational level and, therefore, the results of one
study might not be valid for similar samples in different
countries.

Neurophysiologic measurements are another possible
approach to surrogate outcomes. Besides TMS, brain
activity can be measured using electrodes, which can be
interpreted using several methods. These include the qual-
itative EEG, which measures spontaneous neuronal firing;
the event-related potentials (ERPs), which modifies accord-
ing to the brain area provoked; the quantitative EEG
(qEEG), which maps brain activity; and, finally, new
approaches that provide a three dimensional brain imaging
based on electromagnetic reconstruction of the brain (which
in fact are not widely accepted due to the ‘‘inverse problem
solution.’’ For a review on this topic, see Pascual-Marqui
et al.132). Such measurements lack specificitydsimple
psychological, cognitive, or motor task recruits several brain
networks and thus the measured ERP can be an epiphenom-
enon of another brain region rather than a relevant finding
(ie, a ‘‘noise’’ and not a ‘‘signal’’). Another issue is that
the devices measuring brain activity must be adapted to
decrease the electrical noise generated by the tDCS device;
or, alternatively, the measurement must be collected either
before or after (but not throughout) tDCS delivery.

Neuroimaging methods are divided into two branches:
the first uses radiotracers and is represented by the positron-
emission tomography (PET) and the single-photon emis-
sion computed tomography (SPECT), which assess brain
metabolism through the emission of gamma rays. The
advantage of PET/SPECT in tDCS research is that the
radiotracer can be injected during brain stimulation, thus
providing ‘‘real-time’’ brain imaging. However, the spatial
resolution of such methods is poor. Because they obligatory
require using radiotracers, the radiation dose needs to be
carefully controlled and monitored. The second branch of
neuroimaging is the MRI. This technique presents high
spatial resolution. There are several methodologic
approaches for MRI, which allows evaluation of different
aspects of brain activity. For example, functional MRI
(fMRI) explores the paramagnetic properties of hemoglobin

to infer brain metabolism (based on blood oxygen satura-
tion), whereas magnetic resonance spectroscopy (MRS)
analyzes the magnetic fields of relevant molecules (eg,
glutamate, GABA) and provides a noninvasive ‘‘chemical
biopsy’’ of the brain. Some of these techniques such as
fMRI lack temporal resolution as it does not measure
electrical activity changes directly (it does indirectly via
changes in cerebral flow). Diffusion tensor imaging (DTI)
focuses on the white matter fibers, revealing the neural
connectivity between brain areas. Finally, voxel-based
morphometry (VBM) is a computational analysis of
morphologic images that makes inferences about brain
activity based on the differences of brain tissue concentra-
tion among areas. For tDCS, these methods present the
advantage of high spatial resolution; allowing to assess
subtle changes in the stimulated area. For instance, one
study used VBM to assess neuroplastic changes after 5 days
of TMS over the superior temporal cortex; showing
macroscopic gray matter changes in the region.133 Even
though, the reliability of some methods of MRI are
currently under dispute.134 Moreover, tDCS is not used
concomitantly with MRI yet due to serious risks of over-
heating and thus an ‘‘online’’ visualization of the stimulated
area is not possible although this technical difficulty might
be resolved in the near future.

Finally, there is a wide range of blood measurements
used in neuropsychiatry research for surrogate outcomes.135

One biomarker under intensive investigation is the brain-
derived neurotrophic factor (BDNF). This marker plays an
important role in synaptogenesis and neuroplasticity and
is thus believed to be linkedwith some neuropsychiatric disor-
ders, for instance, BDNF serum levels are low in depressed
patients and increase after antidepressant treatment.136 A
recent study showed BDNF expression also increases
after tDCS.8 Additional biomarkers used in neuropsychiatry
include inflammatory proteins such as interleucin-1, interleu-
cin-6, and TNF-alpha137; hypothalamic-pituitary-adrenal
activity, which is measured by serum and salivary cortisol138;
and oxidative stress proteins such as nitric oxide and other
neuroinflammatory protein markers.139,140 These biomarkers
present two important drawbacks: first, because of the
blood-brain barrier, serum levels might not reflect ‘‘real-
time’’ brain activity (or even brain activity at all); second,
serum levels can only express the net brain activity, and do
not represent a specific area. Therefore, perhaps the most
effective use in tDCS research is to index disease improvement
in phase II/III studies.

TDCS in Children

As the brain is under intensive development during child-
hood and adolescencedparticularly the prefrontal
cortex,141 intensive research is currently being made to
explore how cognition, emotion, behavior, and other func-
tions evolve. Having neuromodulatory properties, tDCS
would be an interesting tool to explore which brain areas
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are particularly important in each stage of development
both in healthy and pathologic conditions, such as epilepsy,
cerebral palsy, autism, and mental deficiency. However,
because of its potential to induce neuroplastic changes,
tDCS should be used carefully especially during important
phases of brain development associated with intensive plas-
ticity and also other processes such as synaptic pruning.

A further step would be using tDCS for treating
neuropsychiatric disorders in children, but this has not
been tested yet. In a review of TMS studies in children, no
adverse effects were reported, but its use is still limited for
some reasons, including lack of established safety guide-
lines.142 Notwithstanding, tDCS is a promising tool for
children neurology and psychiatry.

The Ethics of tDCS

TDCS is a putative candidate for adjuvant therapy for
a range of neuropsychiatric conditions. tDCS is a valuable
tool in neuroscience research, as its focality can be used
to explore several brain aspects. Studies regarding tDCS
ethics reveals its ability to induce changes in behavior
such as in moral judgment,143 deception,144,145 and decision-
making.146 For instance, one recent study showed tDCS
affected utilitarian behavior. Similarly to other studies in
tDCS, the polarity-dependent effects resulted in a selfish
versus selfless behavior in women.143 Although the effects
were short-lasting (volunteers were not exposed to daily
stimulation), the targeted area is similar than used in studies
exploring the long-lasting tDCS effects. Therefore, the
ethical concern is whether tDCS could induce maladaptive
behavior changes, and if so, to what intensity and extent of
time.

Diverse tDCS studies on healthy subjects have shown
positive changes in attention and memory.84,85,147 From the
scope of neuroethics, the issue is whether tDCS enhances
cognition in healthy subjects. Can tDCS be used to boost
performance in specific situations (eg, before school tests)?
Another issue is that the cognitive effects described
(increased attention and memory) from tDCS are in some
aspects similar to amphetamines. Despite therapeutic appli-
cations, amphetamines are sold illegally as a recreational
and performance enhancer drug (with the suggestive
name of ‘‘speed’’). As a tDCS device is easily built and
inexpensive (contrary to TMS), it could also be used for
nonresearch and nontherapeutic objectives by lay people.
In fact, there are online videos in popular web sites such
as Youtube explaining how to build and use a tDCS
device.148 Although it should be underscored that all the
enhancement effects were present for a short period, it is
possible that prolonged daily stimulation could increase
the time span of such effects, thus inducing maladaptive
changes. In contrast, other legal substances such as caffeine
are also frequently used as cognitive boosters.

In fact, because applications in these fields are currently
in the research stage, fixed protocols and safety guidelines

are yet to be defined. Research and development of any new
devices provides an opportunity for brain science and
clinical care to advance, and also challenges the medical
and wider communities to address potential dangers and
complications, ethical and moral quandaries, and issues of
healthcare economics and distributive justice. For innova-
tive neurotechnologies, these are major potential pitfalls to
look out for. Intervening in the brain is always fraught with
the potential for serious consequences. Despite these
concerns, only by conducting carefully planned clinical
and experimental studies can we provide the impetus to
advance care for people with brain, emotional or psycho-
logic, or neuropsychiatric disorders.

Conclusion

The current paper addresses the main aspects of the clinical
research of tDCS. This technique has a wide range of
potential applications and can be used to explore the basic
aspects of neurosciences as well as for the treatment of
neuropsychiatric disorders. TDCS has unique characteris-
tics such as ability to induce antagonistic effects in cortical
excitability according to the parameters of stimulation;
concomitant (‘‘online’’) use with neuropsychologic and
psychophysiologic tests; noninvasiveness and thus absence
of pharmacokinetics interactions, being a putative substi-
tutive/augmentative agent in neuropsychiatry; and low-cost
and portability, making it suitable for increasing access to
novel therapies. However, such characteristics also bring
challenges regarding clinical design, neuroethics and legal
issues. In this paper, we aimed to provide an overview of
tDCS in clinical research; thereby providing knowledge for
conducting proper clinical trials using this promising
approach.

Uncited Textbox

Boxes 1 to 4
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